Programs
Departments & Divisions
Institutes & Centers
Research
Research Areas
Cancer Longevity & AgingDongwen Lyu (Lv), Ph.D., M.S.
Assistant Professor/R
Associate Director
My research addresses two broad topics. The first topic is to study the mechanism of cancers (particularly protein folding/dynamics, protein-protein interaction, membrane proteins, and intrinsically disordered proteins) and develop small molecules including covalent and non-covalent inhibitors, proteolysis targeting chimeras (PROTACs), molecular glue degraders (MGDs), and other types of degraders to treat cancers, especially rare diseases and pediatric cancers. The second topic is to study the cellular and molecular mechanisms of aging and age-related diseases (particularly alternative splicing, protein isoforms, and protein quality control) and discover new senolytic drugs that can selectively eliminate senescent cells to treat aging and age-related diseases.
-
Research & Grants
My research addresses two broad topics. The first topic is to study the mechanism of cancers (particularly protein folding/dynamics, protein-protein interaction, membrane proteins, and intrinsically disordered proteins) and develop small molecules including covalent and non-covalent inhibitors, proteolysis targeting chimeras (PROTACs), molecular glue degraders (MGDs), and other types of degraders to treat cancers. The second topic is to study the cellular and molecular mechanisms of aging and age-related diseases (particularly alternative splicing, protein isoforms, and protein quality control) and discover new senolytic drugs that can selectively eliminate senescent cells to treat aging and age-related diseases.
Grants
Title: Development of Caspase Cleavage Targeting Chimeras (CACTACs) for Targeted Protein Cleavage (Funded, Ongoing, Percentile: 5.0 Score: 21, first submission, payline: 10%)
PI: Dongwen Lyu (contact)
Agency and Project Number: NCI R21 CA286307
Duration: 12/01/2023 – 11/30/2025
Amount: $ 311,122 Direct cost ($97,708 Indirect cost)
Effort: 2.4 calendar months
P01 CA275717-01A1 (Funded)
PI: Sung, Patrick (Core Leader: Hromas, Robert)
Role: co-investigator
09/01/2024 – 08/31/2029
Title: Regulation of BRCA-dependent Genome Repair via the 53BP1 Axis: Chromosome and Replication Analysis (CRA) Core
Amount: $ 1,225,226
Effort: 2.4 calendar months
R01 GM128731 (Funded, Ongoing)
PI: Shaun Olsen
Role: co-investigator
04/15/2019 – 02/28/2027
Title: Structure and function of the essential cell cycle regulator cdc34
Effort: 1.2 calendar months
R01 CA260239 (Funded, Ongoing)
PI(s): Weizhou Zhang, Daohong Zhou, Guangrong Zheng
Role: co-investigator
05/01/2021 – 04/30/2026
Title: Proteolysis-targeting chimera against BCL-XL inhibits breast cancer metastasis
Effort: 0.6 calendar months
R01 CA241191 (Funded, Ongoing)
PI(s): Guangrong Zheng, Daohong Zhou, Marina Y Konopleva
Role: co-investigator
04/01/2020 – 03/31/2025
Title: Inhibition of BCL-xL by targeted degradation
Effort: 1.2 calendar months
R01 CA242003 (Funded, Ongoing)
PI(s): Daohong Zhou, Jose G Trevino, Guangrong Zheng
Role: co-investigator
09/01/2019 – 08/31/2024
Title: Use of BCL-xL proteolysis targeting chimeras to treat pancreatic cancer
Effort: 2.4 calendar months
American Cancer Society Pilot grant (Funded, Ongoing)
PI(s): Sajid Khan
Role: co-investigator
06/01/2024 – 05/31/2025
Title: Developing novel KRAS-targeting molecules for precision cancer therapy
Effort: 0.48 calendar months
R01 AG063801 (Funded, Completed)
PI(s): Daohong Zhou, Jennifer H Elisseeff, Guangrong Zheng
Role: co-investigator
08/01/2019 – 03/31/2024
Develop BCL-xL proteolysis targeting chimeras as safer and better senolytics
Effort: 1.2 calendar months
-
Service
Institutional
As the Associate Director of GCCRI-TDC, I developed a series of new technologies for target identification and validation. Additionally, I provide scientific guidance to ensure our services support basic science research and drug development both within our university and for external customers. These new technologies include genome-wide CRISPR knockout/activation screening, CRISPR/Cas9-based gene editing, Cas13 RNA editing, proximity labeling assay, HiBiT assay, HiBiTSA, and nanoBRET assay. Furthermore, I also actively contributed to the grant applications for the Chromosome Replication Analysis (CRA) core, CPRIT core grant, along with other NIH funding endeavors.
Service to the Profession
Grant reviewer
NIH Study Section: Mechanisms of Cancer Therapeutics A – MCTA, June 2024
Editor
Frontiers in Pharmacology (2022-present, Associate Editor)
Frontiers in Oncology (2022-present, Associate Editor)
-
Publications
51. Xiao, Y., Yuan, Y., Liu, Y., Lin, Z., Zheng, G., Zhou, D., Lv, D.* (2024) Targeted protein degradation: current and emerging approaches to identify new E3 ligases. Journal of Medicinal Chemistry (*The corresponding author) https://doi.org/10.1021/acs.jmedchem.4c00723
50. Lin, Z.*, Xie, Y., Gongora, J., Liu, X., Zahn, E., Palai, B.B., Ramirez, D., Zhao, C., Han, X., MacTaggart, B., Zhang, Y., Greenberg, M.J., Lv, D., Kashina, A., Garcia, B.A.* (2024) An unbiased proteomic platform for activity-based arginylation profiling. BioRxiv (*The corresponding author) https://doi.org/10.1101/2024.06.01.596974
49. Sobh, A., Encinas, E., Patel, A., Surapaneni, G., Kaestner, C., Clerio, M., Vasan, K., Freeman, T., Lv, D., Riva, A., Barwick, B., Zhou, D., Boise, L., Mitsiades, C.S., Kim, B., Bennett, R.L., Chandel, N., Licht, J.D.* (2024) NSD2 drives t(4;14) myeloma cell dependence on adenylate kinase 2 by diverting one-carbon metabolism to the epigenome. Blood 2023022859 (*The corresponding author) https://doi.org/10.1182/blood.2023022859
48. Nayak, D.*, Lv, D.*, Yuan, Y., Zhang, P., Hu, W., Ruben, E.A., Lv, Z., Sung, P., Hromas, R., Zheng, G.**, Zhou, D.** and Olsen, S.K.** (2024) Structure-guided development of a more potent second-generation dual degrader of BCL-2 and BCL-xL. Nature Communications 15:2743 (*The co-first author; **The corresponding author) https://doi.org/10.1038/s41467-024-46922-4
47. Wang, L.*, Xiao, Y.*, Luo, Y., Master, R.P., Mo, J., Kim, M.C., Liu, Y., Maharjan, C., Patel, U.M., De, U., Carelock, M.E., Tithi, T.I., Li, X., Shaffer, D., Guertin, K.R., Zhuang, H., Moser, E., Smalley, K.S., Lv, D., Zhou, D., Zheng, G.**, Zhang, W.** (2024) PROTAC-mediated NR4A1 Degradation as a Novel Strategy for Cancer Immunotherapy. Journal of Experimental Medicine 221(3):e20231519 (*The co-first author; **The corresponding author) https://doi.org/10.1084/jem.20231519
46. Lin, Z.*, Garcia, B.* Lv, D.* (2023) Bifunctional Peptide Nanofibrils for Targeted Protein Degradation. Angew. Chem. Int. Ed. (*The corresponding author) https://doi.org/10.1002/anie.202316581
45. Lin, Z.*, Gongora, J., Liu, X., Xie, Y., Lv, D., Garcia, B.* (2023) Automation and artificial intelligence to enable high-throughput chemical proteomics. Journal of Proteome Research 22 (12), 3676–3682. (*The corresponding author) https://doi.org/10.1021/acs.jproteome.3c00467
44. Xiao, Y.*, Hale, S.*, Awasthee, N., Meng, C., Zhang, X., Liu, Yi., Ding, H., Huo, Z., Lv, D., Zhang, W., He, M., Zheng, G.**, Liao, D.** (2023) Discovery of a highly potent and selective HDAC3 and HDAC8 dual PROTAC degrader. Cell Chemical Biology 30 (11), 1421–1435. (*The co-first author; **The corresponding author) https://doi.org/10.1016/j.chembiol.2023.07.010
43. Pei, J.*, Xiao, Y.*, Liu, X.*, Hu, W., Sobh A., Yuan, Y., Zhou S., Hua, N., Yang Y., Mackintosh, S.G., Zhang, X., Basso K.B., Kamat M., Yang, Q., Licht, J.D., Zheng, G.**, Zhou, D.**, Lv, D.** (2023) Piperlongumine conjugates induce targeted protein degradation. Cell Chemical Biology 30 (2), 203–213. (*The co-first author; **The corresponding author) https://doi.org/10.1016/j.chembiol.2023.01.004
42. Lv, D.*, Pal, P.*, Liu, X., Jia, Y., Thummuri, D., Zhang, P., Hu, W., Pei, J., Zhang, Q., Zhou, S., Khan, S., Zhang, X., Hua, N., Yang, Q., Arango, S., Zhang, W., Nayak, D., Olsen, S.K., Weintraub, S.T., Hromas, R. Konopleva, M., Yuan, Y., Zheng, G., Zhou, D. (2021) A BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity. Nature Communications 12, 6896. (*The co-first author) https://doi.org/10.1038/s41467-021-27210-x
41. Pal, P.*, Thummuri, D.*, Lv, D., Liu, X., Zhang, P., Hu, W., Pod, S., Hua, H, Khan, S., Yuan, Y., Zhang, X., Zhou, D., Zheng, G. (2021) Discovery of a Novel BCL-X L PROTAC Degrader with Enhanced BCL-2 Inhibition. Journal of Medicinal Chemistry 64(19), 14230–14246. (*The co-first author) https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c00517
40. He, Y., Koch, R., Budamagunta, V., Zhang, P., Zhang, X., Khan, S., Thummuri, D., Ortiz, Y.T., Zhang, X., Lv, D., Wiegand, J.S., Li, W., Palmer, A.C., Zheng, G., Weinstock, D.M., Zhou, D. (2020) DT2216, a BCL-XL proteolysis targeting chimera (PROTAC), is a potent anti T-cell lymphoma agent that does not induce significant thrombocytopenia. Journal of Hematology & Oncology 13, 95. https://doi.org/10.1186/s13045-020-00928-9
39. He, Y., Khan, S., Huo, Z., Lv, D., Zhang, X., Liu, X., Yuan, Y., Hromas, R., Xu, M., Zheng, G., Zhou, D. (2020) Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. Journal of Hematology & Oncology 13, 103. https://doi.org/10.1186/s13045-020-00924-z
38. Zhang, X., He, Y., Zhang, P., Budamagunta, V., Lv, D., Thummuri, D., Yang, Y., Pei, J., Yuan, Y., Zhou, D., Zheng, G. (2020) Discovery of IAP-based BCL-XL PROTACs as potent degraders across multiple cancer cell lines. European Journal of Medicinal Chemistry 199, 112397. https://doi.org/10.1016/j.ejmech.2020.112397
37. He, Y., Zhang, X., Chang, J., Kim, H., Zhang, P., Wang, Y., Khan, S., Liu, X., Zhang, X., Lv, D., Song, L., Li, W., Thummuri, D., Yuan, Y., Wiegand, J.S., Ortiz, Y.T., Budamagunta, V., Elisseeff, J.H., Campisi, J., Almeida, M., Zheng, G., Zhou, D. (2020) Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nature Communications 11(1), 1996. https://doi.org/10.1038/s41467-020-15838-0
36. Liu, X., Zhang, X., Lv, D., Yuan, Y., Zheng, G., Zhou, D. (2020) Assays and technologies for Developing Proteolysis Targeting Chimera Degraders. Future Medicinal Chemistry 12(12), 1155–1179. https://doi.org/10.4155/fmc-2020-0073
35. He, Y., Li, W., Lv, D., Zhang, X., Zhang, X., Ortiz, Y.T., Budamagunta, V., Campisi, J., Zheng, G., Zhou, D. (2020) Inhibition of USP7 activity selectively eliminates senescent cells in a p53-dependent manner. Aging Cell e13117. https://doi.org/10.1111/acel.13117
34. Zhang, K.*, Lv, D.-W.*, Li, R. (2020) Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression. Virology 11, 75–87. (*The co-first author) https://doi.org/10.1016/j.virol.2019.11.011
33. Khan, S.*, Zhang, X.*, Lv, D.*, Zhang, Q., He, Y., Zhang, P., Liu, X., Thummuri, D., Yuan, Y., Wiegand, J.S., Pei, J., Zhang, W., Sharma, A., McCurdy, C.R., Kuruvilla, V.M., Baran, N., Ferrando, A.A., Kim, Y., Rogojina, A., Houghton, P.J., Huang, G., Hromas, R.A., Konopleva, M.Y., Zheng G., Zhou, D. (2019) A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine 25, 1938–1947. (*The co-first author) https://doi.org/10.1038/s41591-019-0668-z (cited by 453 times)
32. Zhang, K., Lv, D.-W., Li, R. (2019) Conserved Herpesvirus Protein Kinases Target SAMHD1 to Facilitate Virus Replication. Cell Reports 28(2), 449–459. https://doi.org/10.1016/j.celrep.2019.04.020
31. Cho, J., Xu, Z., Parthasarathy, U., Drashansky, T., Helm, E., Zuniga, A., Lorentsen, K., Mansouri, S., Cho, J., Edelmann, M., Duong, D., Gehring, T., Seeholzer, T., Krappmann, D., Uddin, M., Califano, D., Wang, R., Jin, L., Li, H., Lv, D., Zhou, D., Zhou, L., Avram, D.. (2019) Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature Communications 10(1), 701. https://doi.org/10.1038/s41467-019-08605-3
30. Zhang, X., Zhang, S., Liu, X., Wang, Y., Chang, J., Zhang, X., Mackintosh, S.G., Tackett, A.J., He, Y., Lv, D., Laberge, R.-M., Campisi, J., Wang, J., Zheng, G., Zhou, D. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell e12780. https://doi.org/10.1111/acel.12780
29. Lv, D.-W., Zhang, K., Li, R. (2018) Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLOS Pathogens 14(1): e1006868. https://doi.org/10.1371/journal.ppat.1006868
28. Zhang, K., Lv, D.-W., Li, R. (2017) B cell receptor activation and chemical induction trigger caspase-mediated cleavage of PIAS1 to facilitate Epstein-Barr virus reactivation. Cell Reports 21, 3445–3457. https://doi.org/10.1016/j.celrep.2017.11.071
27. Zhen S.-M., Deng X., Zhang M., Zhu, G.-R., Lv, D.-W., Wang Y., Zhu D., Yan, Y.-M. (2017) Comparative phosphoproteomic analysis under high-nitrogen fertilizer reveals central phosphoproteins promoting wheat grain starch and protein synthesis. Frontiers in Plant Science 8, 67. https://doi.org/10.3389/fpls.2017.00067
26. Lv, D.-W., Zhong, J., Zhang, K., Pandey, A., Li, R. (2017) Understanding Epstein-Barr virus life cycle with proteomics: A temporal analysis of ubiquitination during virus reactivation. OMICS 21, 27–37. https://doi.org/10.1089/omi.2016.0158
25. Lv, D.-W., Zhen S.-M., Zhu, G.-R., Bian, Y.-W., Chen, G.-X., Han, C.-X., Yu, Z.-T., Yan, Y.-M. (2016) Genome-wide identification and analysis of H2O2-responsive and novel miRNAs in Brachypodium distachyon by high throughput sequencing. Frontiers in Plant Science 7, 1567. https://doi.org/10.3389/fpls.2016.01567
24. Lv, D.-W., Zhu, G.-R., Zhu, D., Bian, Y.-W., Liang, X.-N., Cheng, Z.-W., Deng, X., Yan, Y.-M. (2016) Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. Journal of Proteomics 143, 93–105. https://doi.org/10.1016/j.jprot.2016.04.013
23. Li, R., Liao, G., Nirujogi, R.S., Pinto, S.M., Shaw, P.G., Huang, T.C., Wan, J., Qian, J., Gowda, H., Wu, X., Lv, D.-W., Zhang, K., Manda, S.S., Pandey, A., Hayward, S.D. (2015) Phosphoproteomic profiling reveals Epstein-Barr virus protein kinase integration of DNA damage response and mitotic signaling. PLOS Pathogens 11, e1005346. https://doi.org/10.1371/journal.ppat.1005346
22. Bian, Y.-W.*, Lv, D.-W.*, Cheng, Z.-W.*, Gu, A.-Q., Cao, H., Yan, Y.-M. (2015) Integrative proteome analysis of Brachypodium distachyon roots and leaves reveals a synergetic responsive network under H2O2 stress. Journal of Proteomics 128, 388–402. (*The co-first author) https://doi.org/10.1016/j.jprot.2015.08.020
21. Gu, A., Hao, P., Lv, D., Zhen, S., Bian, Y., Ma, C., Xu, Y. , Zhang, W., Yan, Y. (2015) Integrated proteome analysis of the wheat embryo and endosperm reveals central metabolic changes involved in water deficit response during the grain development. Journal of Agricultural and Food Chemistry 63, 8478–87. https://doi.org/10.1021/acs.jafc.5b00575
20. Hao, P.*, Zhu, J.*, Gu, A.*, Lv, D., Ge, P., Chen, G., Li, X., Yan, Y. (2014) An integrative proteome analysis of seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics 15, 1544–63. https://doi.org/10.1002/pmic.201400179
19. Zhang, M., Chen, G.-X., Lv, D.-W., Li, X.-H., Yan, Y.-M. (2015) N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. Journal of Proteome Research 14, 1727-1738. https://doi.org/10.1021/pr501080r
18. Yu, Y.*, Guo, G.*, Lv, D.*, Hu, Y., Li, J., Li, X., Yan, Y. (2014) Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biology 14, 20. (*The co-first author) https://doi.org/10.1186/1471-2229-14-20
17. Lv, D.-W., Li, X., Zhang, M., Gu, A.-Q., Zhen, S.-M., Wang, C., Li, X.-H., Yan, Y.-M. (2014) Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. BMC Genomics 15, 375. https://doi.org/10.1186/1471-2164-15-375
16. Ma, C., Zhou, J., Chen, G., Bian, Y., Lv, D., Li, X., Wang, Z., Yan, Y. (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 15, 1029. https://doi.org/10.1186/1471-2164-15-1029
15. Zhang, M.*, Ma, C.-Y.*, Lv, D.-W.*, Zhen, S.-M., Li, X.-H., Yan, Y.-M. (2014) Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. Journal of Proteome Research 13, 4281–4297. (*The co-first author) https://doi.org/10.1021/pr500400t
14. Zhang, M.*, Lv, D.*, Ge, P.*, Bian, Y., Chen, G., Zhu, G., Li, X., Yan, Y. (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Journal of Proteomics 109, 290–308. (*The co-first author) https://doi.org/10.1016/j.jprot.2014.07.010
13. Lv, D.-W., Ge, P., Zhang, M., Cheng, Z.-W., Li, X.-H., Yan, Y.-M. (2014) Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. Journal of Proteome Research 13, 2381–2395. https://doi.org/10.1021/pr401184v
12. Chen, G.- X.*, Lv, D.-W.*, Li, W.-D.*, Subburaj, S., Yu, Z.-T., Wang, Y.-J., Li, X.-H., Wang, K., Ye, X.-G., Ma, W., Yan, Y.-M. (2014) The α-gliadin genes from Brachypodium distachyon L. provide evidence for a significant gap in the current genome assembly. Functional Integrative Genomics 14, 149–160. (*The co-first author) https://doi.org/10.1007/s10142-013-0353-0
11. Lv, D.-W., Subburaj, S., Cao, M., Yan, X., Li, X., Appels, R., Sun, D.-F., Ma, W., Yan, Y.-M. (2014) Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Molecular and Cellular Proteomics 13, 632–652. https://doi.org/10.1074/mcp.M113.030171
10. Subburaj, S., Chen, G., Han, C., Lv, D., Li, X., Zeller, F. J., Hsam, S. L., Yan, Y. (2014) Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L. Journal of Applied Genetics 55, 27–42. https://doi.org/10.1007/s13353-013-0187-4
9. Han, C., Yu, Z., Feng, S., Lv, D., Yan, X., Chen, G., Li, X., Ma, W., Yan, Y. (2013) Applications of capillary electrophoresis for rapidly separating and characterizing water-soluble proteins of wheat grains. Cereal Research Communications 41, 601–612. https://doi.org/10.1556/CRC.2013.0035
8. Ge, P., Hao, P., Cao, M., Guo, G., Lv, D., Subburaj, S., Li, X., Yan, X., Xiao, J., Ma, W., Yan, Y. (2013) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13, 3046–3058. https://doi.org/10.1002/pmic.201300042
7. Li, J., Wang, S.-L., Cao, M., Lv, D.-W., Subburaj, S., Li, X.-H., Zeller, F., Hsam, S., Yan, Y.-M. (2013) Cloning, expression, and evolutionary analysis of α-gliadin genes from Triticum and Aegilops genomes. Journal of Applied Genetics 54, 157–67. https://doi.org/10.1007/s13353-013-0139-z
6. Yu, Z., Han, C., Wang, S., Lv, D., Chen, G., Li, X., Jiang, G.-L., Yan, Y. (2012) Fast separation and characterization of water-soluble proteins in wheat grains by reversed-phase ultra performance liquid chromatography (RP-UPLC). Journal of Cereal Science 57, 288–294.
5. Zhou, X., Wang, K., Lv, D., Wu, C., Li, J., Zhao, P., Lin, Z., Du, L., Yan, Y., Ye, X. (2013) Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens. PLOS One 8, e79390. https://doi.org/10.1016/j.jcs.2012.11.008
4. Wang, S.*, Wang, K.*, Chen, G.*, Lv, D.*, Han, X., Yu, Z., Li, X., Ye, X., Hsam, S. L., Ma, W., Appels, R., Yan, Y. (2012) Molecular characterization of LMW-GS genes in Brachypodium distachyon L. reveals highly conserved Glu-3 loci in Triticum and related species. BMC Plant Biology 12, 221. (*The co-first author) https://doi.org/10.1186/1471-2229-12-221
3. Jiang, S.S., Liang, X.N., Li, X., Wang, S.L., Lv, D.W., Ma, C.Y., Li, X.H., Ma, W.J., Yan, Y.M. (2012) Wheat drought-responsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. International Journal of Molecular Sciences 13, 16065–16083. https://doi.org/10.3390/ijms131216065
2. Guo, G.*, Lv, D.*, Yan, X.*, Subburaj, S., Ge, P., Li, X., Hu, Y., Yan, Y. (2012) Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biology 12, 147. (*The co-first author) https://doi.org/10.1186/1471-2229-12-147
1. Guo, G., Ge, P., Ma, C., Li, X., Lv, D., Wang, S., Ma, W., Yan, Y. (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. Journal of Proteomics 75, 1867–1885. https://doi.org/10.1016/j.jprot.2011.12.032