1. Bugay V, McCoy AM, Lodge DJ, Brenner R, Frazer A, Carreno FR. Mechanisms associated with the antidepressant-like effects of L-655,708. Neuropsychopharmacology. In press.
2. Carreno FR, Lodge DJ,Frazer A. Ketamine: Leading us into the future for development of antidepressants. Behav Brain Res 2020 383: 112532.
3. Carreno FR, Frazer A. Vagal Nerve Stimulation for Treatment-Resistant Depression. Neurotherapeutics. 2017 14(3):716-727.
4. Carreno FR, Collins GT, Frazer A, Lodge JD. Selective pharmacological augmentation of hippocampal activity produces a sustained antidepressant-like response without abuse-related or psychotomimetic effects. Int J Neuropsychopharmacol., 2017 20(6):504-509.
5. Carreno FR, Donegan JJ, Boley AM, Shah A, DeGuzman M, Frazer A, Lodge DJ. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry. 2016 Sep 21 (9):1298-308.
6. Carreno FR, Frazer A. The allure of transcutaneous vagus nerve stimulation as a novel therapeutic modality. Biol Psychiatry. 2016 Feb 15; 79(4):260-1.
7. Shah AP, Carreno FR, Wu H, Chung YA, Frazer A. Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: comparison with desipramine. Neuroscience. 2016 May 13; 322:273-86.
8. Carreno, FR, Frazer, A. Activation of signaling pathways downstream of the brain-derived neurotrophic factor recptor, TrkB, in rat brain by vagal nerve stimulation and antidepressant drugs. The International Journal of Neuropsychopharmacology. 17(2), 2014.
9. Perez S, Carreno FR, Frazer A, Lodge D. Vagal Nerve Stimulation Reverses Aberrant Dopamine System Function in the MAM Rodent Model of Schizophrenia. J Neurosci. 2014; 34(28):9261-7.
10. Shah A, Carreno FR, Frazer A. Therapeutic modalities for Treatment Resistant Depression: Focus on Vagal Nerve Stimulation (VNS) and Ketamine. Clin Psychopharmacol Neurosci. 2014; 12(2):83-93.
11. Saxena A, Bachelor M, Park YH, Carreno FR, Nedungadi TP, Cunningham JT. Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. Am J Physiol Regul Integr Comp Physiol. 2014; 307(8):R945-55.
12. Furmaga H*, Carreño FR*, Frazer A. (* co-first author) Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One. 7(5), 2012.
13. Walch JD, Carreño FR, Cunningham JT. Intracerebroventricular losartan infusion modulates angiotensin type 1 receptor (AT1R) expression in the subfornical organ (SFO) and drinking behaviour in bile duct ligated rats. Exp Physiol. 98(4), 2012.
14. Nedungadi TP, Carreño FR, Walch JD, Bathina CS, Cunningham JT. Region-specific changes in transient receptor potential vanilloid channel expression in the vasopressin magnocellular system in hepatic cirrhosis-induced hyponatremia. Journal of Neuroendocrinology. 24(4):642-52, 2012.
15. Carreño FR, Walch J, Cunningham JT. BDNF-TrkB Pathway Mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration. Journal of Neuroendocrinology. 23(10):894-905, 2011.
16. Knight WD, Little JT, Carreño FR, Mifflin SW, Cunningham JT. Chronic intermittent hypoxia increases blood pressure and expression of FosB/DFosB in central autonomic regions”. Am J Physiol Regul Integr Comp Physiol. 301(1): R131-9, 2011.
17. Carreño FR, Ji LL, Cunningham JT. Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol. 296(2):R454-66, 2009.
18. Zhang W, Carreño FR, Cunningham JT, Mifflin SW. Chronic sustained hypoxia enhances both evoked EPSCs and norepinephrine inhibition of glutamatergic afferent inputs in the nucleus of the solitary tract. J Neurosci. 29(10):3093-102, 2009.
19. Zhang W, Carreño FR, Cunningham JT, Mifflin SW. Chronic sustained and intermittent hypoxia reduce function of ATP-sensitive potassium channels in nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 295(5):R1555-62, 2008.
20. Carreño FR, Goñi CN, Castro LM, Ferro ES. 14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. Journal of Neurochemistry, 93(1):10-25, 2005.
21. Heimann AS, Favarato MH, Gozzo F, Rioli V, Carreño FR, Eberlin MN, Ferro ES, Krege JH, Krieger JE. ACE gene titration in mice uncovers a new mechanism for ACE on the control of body weight. Physiological Genomics, 20; 20(2):173-82, 2005.
22. Batlouni SR, Carreño FR, Romagosa E, Borella MI. Cell junctions may play an important role in spermatogenesis of catfish P. fasciatum (PISCES, SILURIFORMES). Journal of Molecular Histology, 36(1-2):97-110, 2005.
23. Ferro ES, Carreño FR, Goñi CN, Garrido PAG, Guimarães AO, Castro LM, Oliveira V, Araujo MC, Rioli V, Gomes MD, Fontenele-Neto JD, Hyslop S. The intracellular distribution and secretion of endopeptidases 24.15 (EC 3.4.24.15) and 24.16 (EC 3.4.24.16). Special issue “Novel Roles for metallopeptidases in intracellular signaling”. Protein and Peptide Letters, 11:5, 415-421, 2004.
24. Carreño FR, Seelaender MC. Liver denervation affects hepatocyte mitochondrial fatty acid transport capacity. Cell Biochem Funct. 22(1):9-17; 2004.
25. Junqueira-de-Azevedo Ide L, Pertinhez T, Spisni A, Carreño FR, Farah CS, Ho PL. Cloning and expression of calglandulin, a new EF-hand protein from the venom glands of Bothrops insularis snake in E. coli. Biochim Biophys Acta. 1648(1-2):90-8; 2003.