Liang Tang, Ph.D.
Associate Professor
Department of Biomedical Engineering
UTSA
Translational research combining nanotechnology, biomolecular engineering, and clinical medicine is the focus to enhance healthcare quality from rapid medical diagnostics to therapeutic solutions. Specifically, new nanomaterials with desired optical and magnetic properties are fabricated and characterized. The nanoparticles can be further engineered for self-assembly to form large scale ordered 2D or 3D nanopatterns. By manipulating the unique properties, we emphasize innovative biomedical applications such as high-throughput and multiplexed nano-biochip for point-of-care diagnostics. Multifunctional nanoparticles are also developed as a paradigm shift to theranostic platform capable of not only cellular imaging for diagnosis, but also drug and siRNA delivery in situ for treatment. Click here to visit lab page >>
Areas of Research Interest:
- Nanomaterials, biomaterials, nanocomposites, nanopattern assembly
- Nano-biotechnology, nanosensor, nano-photonics
- Nanomedicine, drug/siRNA delivery, theranostic nanoparticles
- Microfluidics, bioMEMS, Lab-on-a-chip, microfabrication
- Bioinstrumentation
-
Publications
Tang L, Joung B, Ogawa M, Chen PS, Lin SF. Intracellular Calcium Dynamics, Shortened Action Potential Duration and Late-phase 3 Early Afterdepolarization in Langendorff Perfused Rabbit Ventricles. J Cardiovascular Electrophysiology, 23:1364-1371, (2012). (Featured in editorial commentary by Dr. GF Tomaselli, JCE 23:1372-1373)
Tang L, Casas J, Venkataramasubramani, M. Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Analytical Chemistry, 85:1431-1439, (2013).
Casas J, Venkataramasubramani M, Wang YY, Tang L. Replacement of Cetyltrimethylammoniumbromide Bilayer on Gold Nanorod by Alkanethiol Crosslinker for Enhanced Plasmon Resonance Sensitivity. Biosensors and Bioelectronics, 49:525-530, (2013).
Song C, Zhi A, Liu Q, Yang J, Jia G, Shervin J, Tang L, Hu X, Deng R, Xu C, Zhang GP. Rapid and sensitive detection of beta-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosensors and Bioelectronics,50:62-65, (2013).
Wang YY, Tang L. Chemisorption Assembly of Au Nanorods on Mercaptosilanized Glass Substrate and Biofunctionalization for Label-free Biological Detection. Analytica Chimica Acta, 796:122-129, (2013).
Mimum L, Pedraza F, Dhanale A, Tang L, Dravid V, Sardar D. Bimodal Imaging Using Neodymium Doped Gadolinium Fluoride Nanocrystals with Near-Infrared to Near-Infrared Down Conversion Luminescence and Magnetic Resonance Properties. J. of Mater. Chem. B., 1:5702-5710, (2013).
Pokhrel M, Mimum LC, Kumar GA, Yust B, Dhanale A, Tang L, Sardar DK. Stokes emission in GdF3:Nd(3+) nanoparticles for bioimaging probes. Nanoscale, 6:1667-1674 (2014). PMID: 24336743
Tang L, Casas J. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosensors and Bioelectronics, 61:70-75 (2014).
Zhang B, Morales AW, Peterso R, Tang L, Ye JY. Label-free detection of cardiac troponin I with a photonic crystal biosensor. Biosensor and Bioelectronics, 58:107-113 (2014).
Wang YY, Tang L. Multiplexed gold nanorod array biochip for multi-sample analysis. Biosensor and Bioelectronics, 14:542-549 (2014).
Wang XF, Mei Z, Wang YY, Tang L. Gold nanorod biochip functionalization by antibody thiolation. Talanta, 136:1-8 (2015).
Mei Z, Dhanale A, Gangaharan A, Sardar DK, Tang L. Water dispersion of magnetic nanoparticles with selective biofunctionality for enhanced plasmonic biosensing. Talanta, 151:23-29 (2016).
Mei Z, Tang L. Surface plasmon coupled fluorescence enhancedment based on ordered gold nanorod array biochip for ultra-sensitive DNA analysis. Analytical Chemistry, 89:633-639 (2017).
Wang XF, Mei Z, Wang YY, Tang L. Gold nanorod biochip functionalization by antibody thiolation. Talanta, (2014). In press.
Wang YY, Tang L. Multiplexed gold nanorod array biochip for multi-sample analysis. Biosensor and Bioelectronics, (2014). DOI: 10.1016/j.bios.2014.07.041
Zhang B, Morales AW, Peterso R, Tang L, Ye JY. Label-free detection of cardiac troponin I with a photonic crystal biosensor. Biosensor and Bioelectronics, 58:107-113 (2014).
Tang L, Casas J. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosensors and Bioelectronics, 61:70-75 (2014).
Pokhrel M, Mimum LC, Kumar GA, Yust B, Dhanale A, Tang L, Sardar DK. Stokes emission in GdF3:Nd(3+) nanoparticles for bioimaging probes. Nanoscale, 6:1667-1674 (2014).
Mimum L, Pedraza F, Dhanale A, Tang L, Dravid V, Sardar D. Bimodal Imaging Using Neodymium Doped Gadolinium Fluoride Nanocrystals with Near-Infrared to Near-Infrared Down Conversion Luminescence and Magnetic Resonance Properties. J. of Mater. Chem. B., 1:5702-5710, (2013).
Wang YY, Tang L. Chemisorption Assembly of Au Nanorods on Mercaptosilanized Glass Substrate and Biofunctionalization for Label-free Biological Detection. Analytica Chimica Acta, 796:122-129, (2013).
Song C, Zhi A, Liu Q, Yang J, Jia G, Shervin J, Tang L, Hu X, Deng R, Xu C, Zhang GP. Rapid and sensitive detection of beta-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosensors and Bioelectronics,50:62-65, (2013).
Casas J, Venkataramasubramani M, Wang YY, Tang L. Replacement of Cetyltrimethylammoniumbromide Bilayer on Gold Nanorod by Alkanethiol Crosslinker for Enhanced Plasmon Resonance Sensitivity. Biosensors and Bioelectronics, 49:525-530, (2013).
Tang L, Casas J, Venkataramasubramani, M. Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Analytical Chemistry, 85:1431-1439, (2013).